skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shelley, CE"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rising temperatures have important consequences for somatic growth, but observed relationships between temperature and growth can vary in both magnitude and direction. The key to understanding such variation is knowing how temperature affects both the amount of energy available for growth and the efficiency with which surplus energy is assimilated into the body. We tested the hypothesis that patterns of temperature-dependent growth are driven by differential sensitivities of energy intake and expenditure to temperature. Larvae of California grunion Leuresthes tenuis were reared across a range of temperatures and 2 levels of food availability. Energy intake was measured from feeding rate, and energy expenditure was evaluated by measuring respiration and excretion rates. When food was abundant, both intake and expenditure increased with temperature, but intake increased more rapidly. These results suggest that high temperatures should lead to faster growth, and these predictions were confirmed by a separate experiment. In contrast, when food was restricted, the increase in energetic demand with temperature outpaced energy intake, suggesting a dwindling surplus of energy at high temperatures. This predicted reversal of the effects of temperature on growth was also confirmed experimentally. Finally, we compared patterns of energetics and growth to test the effects of temperature on food assimilation efficiency. When food was unlimited, assimilation efficiency decreased rapidly with temperature. When food was restricted, assimilation efficiency remained relatively high. Overall, our results emphasize the value of a bioenergetic perspective for illuminating why and how growth rates are likely to change in a warming ocean. 
    more » « less